

Note

Synthesis of new ellagic acid derivatives

P D Jadhav & K S Laddha*

A-282, Pharmaceutical Division, University Institute of Chemical Technology (Autonomous), University of Mumbai, Matunga Mumbai 400 019, India.

E-mail: purushottam_j77@yahoo.com, ksladdha@udct.org

Received 6 October 2004; accepted (revised) 2 May 2005

Ellagic acid has been isolated from *Punica granatum*. A series of hexahydroxydiphenyl derivatives of ellagic acid have been synthesized and characterized by spectroscopic analysis.

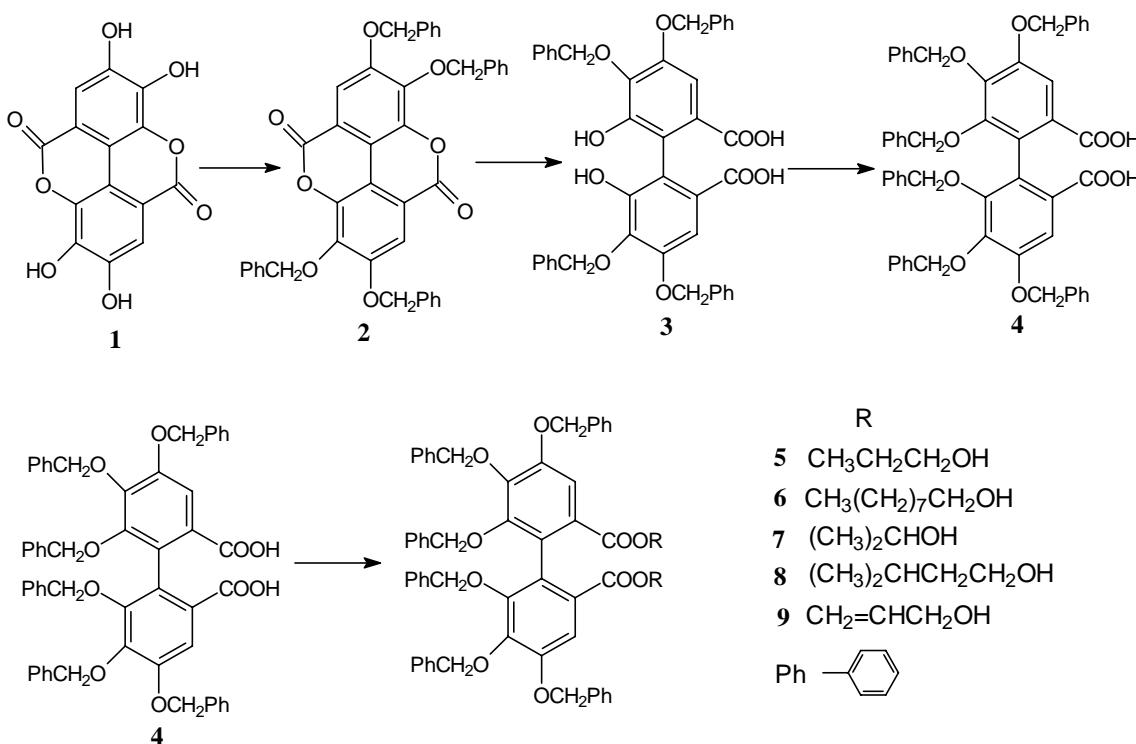
Keywords: Ellagic acid, *Punica granatum*, ellagitannins, hexahydroxydiphenic acid

IPC: Int.Cl.⁸ C07C

Ellagic acid **1** is a naturally occurring phytonutrient. It is a phenolic lactone and widely distributed in woody dicotyledonous plants. It is present in plants in the form of hydrolyzable tannins called ellagitannins. Ellagitannins are esters of glucose with hexahydroxydiphenic acid; when hydrolyzed, they yield ellagic acid¹ **1**.

Ellagic acid **1** has been shown to possess numerous anticarcinogenic and antimutagenic properties towards a variety of different carcinogens, including nitrosamines, azoxymethane, mycotoxins and polycyclic aromatic hydrocarbons²⁻⁷. Different synthetic derivatives of ellagic acid **1** have been reported as potent anti HIV agents^{8,9}, as DNA gyrase inhibitor¹⁰, as inhibitors of squalene epoxidase¹¹ and as inhibitors of protein kinase C¹². Attempt has been made to synthesize new hexahydroxydiphenyl derivatives of ellagic acid **1**.

Ellagic acid **1** was isolated from *Punica granatum* Linn. (Pomegranate, Fam: Punicaceae). The physical, chemical and spectral data of ellagic acid **1** were identical with those described in the literature¹³⁻¹⁵. The biphenyl derivatives **2-9** were synthesized from ellagic acid **1**. Ellagic acid **1** was benzylated with benzyl chloride and K₂CO₃, KI in acetophenone under reflux to give tetrabenzyl ellagic acid^{9,12,16} **2**, yield 35%. Tetrabenzyl ellagic acid **2** was hydrolyzed with KOH-50% EtOH to give 2,2'-dihydroxy-3,3',4,4'-tetrakis(benzyloxy)-1, 1'-biphenyl-6, 6'-dicarboxylic


acid **3** in 90% yield¹². Benzylation of **3** with benzyl bromide and K₂CO₃ in dry acetone followed by hydrolysis with 2% NaOH gave 2,2',3,3',4,4'-hexakis(benzyloxy)-1,1'-biphenyl-6,6'-dicarboxylic acid **4** with 60% yield¹². The physical and spectral data of compounds **2**, **3** and **4** were identical with those described in the literature¹².

Hexabenzyl diphenyl dicarboxylic acid **4** was converted to more reactive compound as acid chloride with thionyl chloride¹¹, which was further esterified with propanol, nonanol, isopropanol, isopentanol, allyl alcohol to yield the compounds *n*-dipropyl 2,2',3,3',4,4'-hexakis(benzyloxy)-1,1'-biphenyl-6,6'-dicarboxylate **5**, *n*-dinonyl 2,2',3,3',4,4'-hexakis(benzyloxy)-1,1'-biphenyl-6,6'-dicarboxylate **6**, diisopropyl 2,2',3,3',4,4'-hexakis(benzyloxy)-1,1'-biphenyl-6,6'-dicarboxylate **7**, diisopentyl 2,2',3,3',4,4'-hexakis(benzyloxy)-1,1'-biphenyl-6,6'-dicarboxylate **8** and diallyl 2,2',3,3',4,4'-hexakis(benzyloxy)-1,1'-biphenyl-6,6'-dicarboxylate **9**, respectively (**Scheme I**). Benzene was found to be a suitable solvent for the esterification with respect to the yield. Mixture of mono- and diester was obtained, in which diester was predominant and purified by column chromatography. All the diesters were obtained in 50-75 % yield.

Experimental Section

Synthesis of esters of hexabenzyl diphenyl dicarboxylic acid. Hexabenzyl diphenyl dicarboxylic acid **4** (2 g) was refluxed in dry benzene (20 mL) with thionyl chloride (1 mL) for 2 hr using dimethyl formamide (0.2 mL) as a catalyst. After 2 hr, suspension of acid chloride was obtained in benzene. Benzene and unreacted thionyl chloride were distilled off under reduced pressure to get acid chloride. Acid chloride (1 mole) was resuspended in benzene and refluxed with respective alcohol (4 moles) in presence of pyridine (0.1 mL) for 2 hr. The reaction was monitored by TLC using *n*-hexane-acetone (6:4) as solvent system. After completion of reaction, the mixture was concentrated to syrup, which was chromatographed over silica gel. Elution with *n*-hexane-acetone (9:1) yielded the respective ester.

***n*-Dipropyl 2,2',3,3',4,4'-hexakis(benzyloxy)-1,1'-biphenyl-6,6'-dicarboxylate 5:** Yield 75 %,

Scheme I

colourless syrup; IR (CHCl_3): 3019.1, 2969.3, 1717.3, 1592.5, 1454.5, 1326.9, 1215.9, 753.3 cm^{-1} ; ^1H NMR (60 MHz, CCl_4): δ 7.447-6.869 (32H, m, in total Ar-H, 5-H, 5'-H), 5.192-4.707 (12H, m, OCH_2Ph), 3.978-3.762 (4H, t, OCH_2), 1.555-1.152 (4H, m, CH_2), 0.839-0.607 (6H, t, CH_3); MS: m/z 964.42 (M^+).

n-Dinonyl 2,2',3,3',4,4'-hexakis(benzyloxy)-1,1'-biphenyl-6,6'-dicarboxylate 6: Yield 65%, colourless syrup; IR (CHCl_3): 3017.1, 2928.5, 1715.5, 1592.3, 1454.5, 1327.9, 1215.9, 756.5 cm^{-1} ; ^1H NMR (60 MHz, CCl_4): δ 7.378-6.877 (32H, m, in total Ar-H, 5-H, 5'-H), 5.188-4.711 (12H, m, OCH_2Ph), 3.913 (4H, m, OCH_2), 1.193-0.843 (34H, m, $(\text{CH}_2)_7\text{CH}_3$, a typical long chain *n*-alkyl pattern); MS: m/z 1132.22 (M^+).

Diisopropyl 2,2',3,3',4,4'-hexakis(benzyloxy)-1,1'-biphenyl-6,6'-dicarboxylate 7: Yield 50%, light yellow waxy solid; IR (CHCl_3): 3019.8, 1697.6, 1592.6, 1412.6, 1320.9, 1215.8, 754.7 cm^{-1} ; ^1H NMR (60 MHz, CCl_4): δ 7.468-6.865 (32H, m, in total Ar-H, 5-H, 5'-H), 5.216-4.540 (14H, m, OCH_2Ph , OCH), 0.945 (12H, d, J = 6.12 Hz, CH_3); MS: m/z 964.20 (M^+).

Diisopentyl 2,2',3,3',4,4'-hexakis(benzyloxy)-1,1'-biphenyl-6,6'-dicarboxylate 8: Yield 60%, colourless syrup; IR (CHCl_3): 3019.6, 2960.9, 1714.0, 1592.2, 1454.2, 1325.6, 1216.0, 749.0 cm^{-1} ; ^1H NMR

(60 MHz, CCl_4): δ 7.456-6.869 (32H, m, in total Ar-H, 5-H, 5'-H), 5.485-4.512 (12H, m, OCH_2Ph), 4.060-3.766 (4H, m, OCH_2), 1.250-1.059 (6H, m, CH_2CH), 0.855 (12H, d, J = 5.1 Hz, CH_3); MS: m/z 1020.26 (M^+).

Diallyl 2,2',3,3',4,4'-hexakis(benzyloxy)-1,1'-biphenyl-6,6'-dicarboxylate 9: Yield 50%, colourless syrup; IR (CHCl_3): 3019.1, 1721.6, 1592.3, 1454.0, 1325.0, 1215.9, 759.0 cm^{-1} ; ^1H NMR (60 MHz, CCl_4): δ 7.407-6.877 (32H, m, in total Ar-H, 5-H, 5'-H), 5.587-5.355 (2H, m, CH), 5.171-4.719 (16H, m, OCH_2Ph , CH_2), 4.451 (4H, d, J = 5.16 Hz, OCH_2); MS: m/z 960.17 (M^+).

References

- Evans W C, *Pharmacognosy*, 15th edn, (Harcourt Publishers Ltd, Edinburgh), **2002**, 214.
- Mukhtar H, Das M & Bickers D R, *Cancer Res*, **46**, **1986**, 2262.
- Mandal S, Ahuja A, Shivapurkar N M, Cheng S J, Groopman J D & Stoner G D, *Carcinogenesis*, **8**, **1987**, 1651.
- Dixit R & Gold B, *Proc Nat Acad Sci*, **83**, **1986**, 8039.
- Rao C V, Tohomo K, Rigotti J, Zang E, Kelloff G & Reddy B S, *Cancer Res*, **51**, **1991**, 2528.
- Boukharts M, Jalbert G & Castonguay A, *Nutr Cancer*, **18**, **1992**, 181.
- Lesca P, *Carcinogenesis*, **4**, **1983**, 1651.
- Lan X, Jing X X, Yoshiiki K, Mark C L, Shwu H L, Pai R B, Yung C C & Kuo H L, *J Med Chem*, **38**, **1995**, 3003.

9 Yoshiki K, Li H, Kilkuskie R E, Bodner A J & Kuo H L, *Bioorg Med Chem Lett*, 2(3), **1992**, 235.

10 Michele A, Weidner W, Jason A, Jeffrey F, Stephanie A, Fraga S, Jamese H, Kwasi O & Jhon F. B, *Bioorg Med Chem Lett*, 8, **1998**, 97.

11 Ikuro A, Yasuhiko K, Hiroshi N, Takashi T, Yasumasa I & Yoshiki K, *J Nat Prod*, 64, **2001**, 1010.

12 Yoshiki K, Li H, Lawrence M B, Jack B J, William P J & Kuo H L, *J Med Chem*, 37, **1994**, 195.

13 Lin T Y & Vine R P, *J Food Sci*, 55(6), **1990**, 1607.

14 Wilson T C & Hagermann A E, *J Agric Food Chem*, 38, **1990**, 1678.

15 Singleton V L & George L M, *J Agric Food Chem*, 14(1), **1966**, 5.

16 Stephane Q & Feldman K S, *Chem Rev*, 96, **1996**, 475.